5 research outputs found

    Estimating the Potential Speedup of Computer Vision Applications on Embedded Multiprocessors

    Full text link
    Computer vision applications constitute one of the key drivers for embedded multicore architectures. Although the number of available cores is increasing in new architectures, designing an application to maximize the utilization of the platform is still a challenge. In this sense, parallel performance prediction tools can aid developers in understanding the characteristics of an application and finding the most adequate parallelization strategy. In this work, we present a method for early parallel performance estimation on embedded multiprocessors from sequential application traces. We describe its implementation in Parana, a fast trace-driven simulator targeting OpenMP applications on the STMicroelectronics' STxP70 Application-Specific Multiprocessor (ASMP). Results for the FAST key point detector application show an error margin of less than 10% compared to the reference cycle-approximate simulator, with lower modeling effort and up to 20x faster execution time.Comment: Presented at DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS 2015) (arXiv:1502.07241

    Application-level Performance Optimization: A Computer Vision Case Study on STHORM

    Get PDF
    AbstractComputer vision applications constitute one of the key drivers for embedded many-core architectures. In order to exploit the full potential of such systems, a balance between computation and communication is critical, but many computer vision algorithms present a highly data-dependent behavior that complexifies this task. To enable application performance optimization, the development environment must provide the developer with tools for fast and precise application-level performance analysis. We describe the process to port and optimize a face detection application onto the STHORM many-core accelerator using the STHORM OpenCL SDK. We identify the main factors that limit performance and discern the contributions arising from: the application itself, the OpenCL programming model, and the STHORM OpenCL SDK. Finally, we show how these issues can be addressed in the future to enable developers to further improve application performance
    corecore